a×b=xn-ym=0
向量垂直,平行的公式为:
若a,b是两个向量:a=(x,y)b=(m,n);
则a⊥b的充要条件是a·b=0,即(xm+yn)=0;
向量平行的公式为:a//b→a×b=xn-ym=0;
向量的用途
向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到;
“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。
小学数量关系式有如下:
1、每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
数量关系式就是量与量之间的关系用式子表达。 比如说a是b的两倍,写成数量关系式是:a=2b
常用的数量关系式
1、每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
2、1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。
3、速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
4、单价×数量=总价,总价÷单价=数量,总价÷数量=单价。
5、工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率 。
6、加数+加数=和,和-一个加数=另一个加数。
7、被减数-减数=差,被减数-差=减数,差+减数=被减数。
8、因数×因数=积,积÷一个因数=另一个因数。
9、被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
扩展资料:
数学定义定理公式
1 三角形的面积=底×高÷2。公式S=a×h÷2
2 正方形的面积=边长×边长公式S=a×a
3 长方形的面积=长×宽公式S=a×b
4 平行四边形的面积=底×高公式S=a×h
5 梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
6 内角和:三角形的内角和=180度。
7 长方体的体积=长×宽×高公式:V=abh
8 长方体(或正方体)的体积=底面积×高公式:V=abh
9 正方体的体积=棱长×棱长×棱长公式:V=aaa
10 圆的周长=直径×π公式:L=πd=2πr
11 圆的面积=半径×半径×π公式:S=πr2
12 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
13 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
14 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
15 圆锥的体积=1/3底面×积高。公式:V=1/3Sh
16 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
17 分数的乘法则:用分子的积做分子,用分母的积做分母。
18 分数的除法则:除以一个数等于乘以这个数的倒数。
空间向量公式如下:
1、空间向量线面夹角公式是cosθ=(ab的内积)/(|a||b|)。
2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。
3、空间向量的模公式:空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:²√x²+y²+z²,平面向量(x,y),模长是:²√x²+y²。
空间向量基本定理:
1、共线向量定理
两个空间向量a、b向量,a∥b的充要条件是存在唯一的实数λ,使a=λb。
2、共面向量定理
如果两个向量a、b不共线,则向量c与向量a、b共面的充要条件是:存在唯一的一对实数x、y,使c=ax+by。
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
小学数量关系式大全如下:
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数。
3、速度×时间=路程路程÷速度=时间路程÷时间=速度。
4、单价×数量=总价总价÷单价=数量总价÷数量=单价。
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率。
6、加数+加数=和和-一个加数=另一个加数。
7、被减数-减数=差被减数-差=减数差+减数=被减数。
8、被除数÷除数=商被除数÷商=除数商×除数=被除数。
9、正方形(C:周长 S:面积 a:边长):周长=边长×4 , C=4a,面积=边长×边长。
10、正方体 (V:体积 a:棱长 ):表面积=棱长×棱长×6 , S表=a×a×6 ,体积=棱长×棱长×棱长 , V=a×a×a。
11、长方形( C:周长 S:面积 a:边长):周长=(长+宽)×2 C=2(a+b) ,面积=长×宽, S=ab。
向量的数量积公式:a*b=|a||b|cosθ a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。
已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。
向量数量积的运算律:
⑴交换律:a·b=b·a
⑵数乘结合律:(λa)·b=λ(a·b)=a·(λb)
⑶分配律:(a+b)·c=a·c+b·c
向量数量积公式:如果向量 a、b 的坐标分别是(a1,a2,.,an)、(b1,b2,.,bn),那么 a*b=a1b1+a2b2+.+anbn 。
数量积是接受在实数R上的两个向量并返回一个实数值标量的二元运算。向量积,数学中又称外积、叉积,物理中称矢积,叉乘,是一种在向量空间中向量的二元运算。
向量积(带方向):也被称为矢量积,叉积即交叉乘积,外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。
向量数量积的基本性质:
设ab都是非零向量θ是a与b的夹角则。
① cosθ=a·b/|a||daob|。
②当a与b同向时a·b=|a||b|当a与b反向时a·b=-|a||b|。
③ |a·b|≤|a||b|。
④a⊥b=a·b=0适用在平面内的两直线。
向量数量积运算规律。
1.交换律α·β=β·α。
2.分配律(α+β)·γ=α·γ+β·γ。
3.若λ为数(λα)·β=λ(α·β)=α·(λβ)。
若λμ为数(λα)·(μβ)=λμ(α·β)。
4.α·α=|α|^2 此外α·α=0=α=0。
向量的数量积不满足消去律即一般情况下α·β=α·γα≠0 ≠β=γ。
向量的数量积不满足结合律即一般α·β)·γ ≠α·β·γ。
相互垂直的两向量数量积为0。
向量的叉乘运算法则为|向量c|=|向量a×向量b|=|a||b|sin,向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。
向量的叉乘运算法则
1点乘和叉乘的区别
点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。
在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。
向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。
2物理学中的应用
在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。
将向量用坐标表示(三维向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
则向量a×向量b=| i j k ||a1 b1 c1||a2 b2 c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。