E170|大模型应用之困与异军突起的“埃森哲们”

E170|大模型应用之困与异军突起的“埃森哲们”

00:00
01:22:28

投资底层模型还是投资应用,过去一直是大模型投资的经典争论。大模型出来已经两年了,现在这些应用发展的到底怎么样?

在寻找大模型的落地场景的时候,以埃森哲为代表的咨询公司成为了AI“卖水人”,成为在这轮生成式AI浪潮中最赚钱的公司之一。根据埃森哲2024财年的财报,由生成式AI带来的新增订单金额已达30亿美元。在国内,字节、阿里和智谱等基座大模型供应商也扮演了类似的角色。

本期《硅谷101》我们邀请了大模型领域的投资人和创业者,探讨大模型应用落地的挑战,以及尝试从“人工智能”的定义出发,聊聊投资人眼里应用类公司的核心竞争力。

【主播】
泓君Jane,硅谷101创始人,播客主理人
【嘉宾】
邱谆 (Jonathan Qiu),华映资本海外合伙人
翟琦 (Keith Zhai),AgentQL 联合创始人

【你将听到】
大模型应用之困
05:09 创业者心态:范式革命到来时不需要思考要做什么,只需要开始做
08:45 投资人心态:纯应用没有护城河,需要垂直整合底层模型
11:29 创业公司商业化掣肘:有没有私有化的数据?
14:32 缺失的中间层:大模型时代的操作系统尚未出现
17:40 模糊的边界:回答问题的是底层大模型,还是上层的应用?
18:33 Notebook LM和Perplexity:短期靠产品力,长期靠数据和底层模型
24:10 “所有应用公司最后都会去拼自己的模型”
26:25 市场上的两类公司:赚钱的公司与投资人眼中的好公司
28:25 重新理解人工智能与三个关键人物:Alex Krizhevsky,李飞飞,吴恩达
35:49 获取数据是互联网领域的脏活儿
45:33 创业公司如何跟OpenAI拼底座训练:聚焦在垂类
49:12 Devon的教训:“见光死”应用遍地都是
50:46 大语言模型的另一个幻觉:误把生产工具当成了生产力本身
52:29 多模态产品的护城河:不依赖通用的底座模型
“埃森哲们”的挣钱之道
54:51 美国公司的AI应用:吆喝大,落地少,有事先找咨询
57:05 基础建设不完善让埃森哲吃到大量AI红利
01:02:13 “埃森哲杀不死埃森哲”:脑力密集型公司很难转型成功为中间层
01:04:17 如果某个基层建设环节能实现交钥匙工程,整个生态就会被打开
01:14:14 做基础模型的公司也会抢埃森哲的生意
01:17:12 RAG和微调的数据悖论:数据越多反而越难算出答案?

*数据说明:
56:06 此处嘉宾提到的“埃森哲营收”应为“由生成式AI带来的新增订单金额”,具体数据请参考埃森哲财报

【监制】
杜秀
【后期】
AMEI
【BGM】
Cold and Blue - Roy Edwin Williams
Looking for Sisters - Daniel Fridell

【在这里找到我们】
公众号:硅谷101
收听渠道:苹果|小宇宙|喜马拉雅|蜻蜓FM|网易云音乐|QQ音乐|荔枝播客
海外用户:Apple Podcast|Spotify|TuneIn|YouTube|Amazon Music
联系我们:podcast@sv101.net

以上内容来自专辑
用户评论
  • BLpodcast

    篇幅過長,缺乏層次,聽過即逝

  • 放风筝的风筝线

    缺乏大量数据的创业公司在AI领域还有机会吗?

  • 薄荷Glass

    底层能力可以理解为AI时代的基础设施吗?大模型是不是AI的操作系统?

  • 秦晓春

    想请教两个问题。①、除了商业应用和重复劳动的岗位之外,普通的行政岗位(不包含重大决策性工作)是不是也可以通过大数据训练,喂出来一个替代人工的应用工具啊?②、以目前行业内专业人员的眼光来看,大模型应用,有没有盲点?或者无法实现覆盖的应用场景啊?在下完全是门外汉,但是对这期内容非常感兴趣。复盼不吝赐教。

  • fy_王子

    泛式革命和普通创业有啥区别?真就万事开头难?

  • 小俊不大俊

    agent研究方向的区别能再详细解释下吗

  • 听友413253844

    AI发展历程这么曲折啊

  • 姚念康

    这个采访不应该由投资者主导,他没有每天沉浸在行业里,所以评论水平一般,甚至错误。。

  • 1330059mmli

    主持人和嘉宾抓点能力都很强!

  • 人生海海能否看到我

    未来AI创业,ToB还是ToC更有前景?