小时候,他就是一个天气迷,至少到了密切留意最高最低温度计的程度,由此记录下了他父母在康涅狄格州西哈特福德镇的房子外每天的最高和最低气温。但相较于观察温度计,他还是花了更多时间待在室内,做数学谜题。有时候,他会与父亲一起解题。有一次,他们碰到了一个特别难的题目,并最终发现它是无解的。这是可接受的,他的父亲告诉他:你总是可以尝试证明解不存在来解决一个问题。洛伦茨喜欢这一点,因为他向来喜欢数学的纯粹性,而当他在 1938 年从达特茅斯学院毕业后,他认定数学是自己的志业。4 然而,造化弄人,在美国加入第二次世界大战后,他应召入伍,成为美国陆军航空兵团的一名天气预报员。在战后,洛伦茨决定留在气象学领域,研究其理论,略微推进其数学。他靠着在诸如大气环流之类的正统问题上发表论文而奠定自己的地位。与此同时,他继续思考着天气预报的问题。
4洛伦茨。此外,他对于数学和气象学在自己的思维中角力的一个叙述是:“Irregularity: A Fundamental Property of the Atmosphere,”Crafoord Prize Lecture presented at the Royal Swedish Academy of Sciences, Stockholm, Sept.28, 1983, in Tellus 36A (1984), pp. 98–110.
在当时的大多数气象学家看来,天气预报根本称不上一门科学。它只是一种直觉和经验之谈,需要技术人员利用某种直觉能力解读仪器数据和云彩来预测第二天的天气。它不过是猜测。在像 MIT 这样的学术重镇,气象学青睐那些有解的问题。洛伦茨像其他人一样清楚天气预报的难度,毕竟当初为了帮助军事飞行员,他有过切身经验,但他在这个问题上仍然抱有一种兴趣——一种数学上的兴趣。
不仅气象学家鄙弃天气预报,在 20 世纪 60 年代,几乎所有严肃的科学家都不信任计算机。这些加强版的计算器看上去根本不像能为理论科学所用的工具。所以数值天气建模看上去并不是一个货真价实的问题。但它的时机已然成熟。天气预报等待了两个世纪,终于等到一种机器能够通过蛮力一再重复成千上万次计算。只有计算机能够兑现这样一种牛顿式许诺,即世界随着一条决定论式的路径前进,像行星那样循规蹈矩,像日月食和潮汐那样可以预测。在理论上,计算机能够帮助气象学家做到长久以来天文学家利用铅笔和计算尺所能做到的:根据其初始条件以及指导其运行的物理定律,计算出我们宇宙的未来。而像描述行星运动的方程组一样,描述空气和水的运动的方程组也已经很好地为我们所知。天文学家并没有,也永远不会臻于完美,至少在一个充斥着八大行星、数十个卫星和成千上万个小行星的引力作用的太阳系中不会,但对行星运动的计算如此精确,以至于人们忘了它们只是预测。当天文学家说“哈雷彗星将在七十六年后如此这般回归”时,这听上去就像事实,而非预言。决定论式的数值预测算出了航天器和导弹的精确轨道。为什么这不能用到风和云上面?
天气要远远更为复杂,但它也受同样的定律支配。或许一部足够强大的计算机能够成为拉普拉斯——这位 18 世纪的哲学家兼数学家以及牛顿哲学的热忱支持者所想象的至高智能。“这样一个智能,”拉普拉斯写道,“将在同一个方程中囊括宇宙中上至最大天体,下至最轻原子的运动;在它看来,没有什么是不确定的,而未来,就像过去,将在它的眼前一览无余。”5 在如今爱因斯坦相对论和海森堡不确定性原理的时代,拉普拉斯的乐观主义使他看上去几近小丑,但现代科学的很大一部分其实一直在追求他的梦想。尽管没有明说,许多 20 世纪的科学家(生物学家、神经病学家、经济学家等)长久以来所追求的目标一直是,将他们的宇宙分解成将遵循科学定律的最简单原子。在所有这些科学中,他们一直都在运用某种牛顿式决定论。现代计算科学的先驱们也始终心向拉普拉斯,并且自从约翰·冯·诺伊曼 20 世纪 50 年代在新泽西州普林斯顿镇的高等研究院设计出他的第一部计算机以来,计算的历史就与天气预报的历史交织在一起。冯·诺伊曼意识到,天气建模会是计算机的一项理想任务。
5Pierre Simon de Laplace, A Philosophical Essay on Probabilities (New York:Dover, 1951).
还没有评论,快来发表第一个评论!