by Levi Leonard Conant, Ph. D.
“CHAPTER 3”
THE ORIGIN OF NUMBER WORDS.
In the comparison of languages and the search for primitive root forms, no class of expressions has been subjected to closer scrutiny than the little cluster of words, found in each language, which constitutes a part of the daily vocabulary of almost every human being—the words with which we begin our counting. It is assumed, and with good reason, that these are among the earlier words to appear in any language; and in the mutations of human speech, they are found to suffer less than almost any other portion of a language. Kinship between tongues remote from each other has in many instances been detected by the similarity found to exist among the every-day words of each; and among these words one may look with a good degree of certainty for the 1, 2, 3, etc., of the number scale. So fruitful has been this line of research, that the attempt has been made, even, to establish a common origin for all the races of mankind by means of a comparison of numeral words. But in this instance, as in so many others that will readily occur to the mind, the result has been that the theory has finally taken possession of the author and reduced him to complete subjugation, instead of remaining his servant and submitting to the legitimate results of patient and careful investigation. Linguistic research is so full of snares and pitfalls that the student must needs employ the greatest degree of discrimination before asserting kinship of race because of resemblances in vocabulary; or even relationship between words in the same language because of some chance likeness of form that may exist between them. Probably no one would argue that the English and the Babusesse of Central Africa were of the same primitive stock simply because in the language of the latter five atano means 5, and ten kumi means 10. But, on the other hand, many will argue that, because the German zehn means 10, and zehen means toes, the ancestors of the Germans counted on their toes; and that with them, 10 was the complete count of the toes. It may be so. We certainly have no evidence with which to disprove this; but, before accepting it as a fact, or even as a reasonable hypothesis, we may be pardoned for demanding some evidence aside from the mere resemblance in the form of the words. If, in the study of numeral words, form is to constitute our chief guide, we must expect now and then to be confronted with facts which are not easily reconciled with any pet theory.
The scope of the present work will admit of no more than a hasty examination of numeral forms, in which only actual and well ascertained meanings will be considered. But here we are at the outset confronted with a class of words whose original meanings appear to be entirely lost. They are what may be termed the numerals proper—the native, uncompounded words used to signify number. Such words are the one, two, three, etc., of English; the eins, zwei, drei, etc., of German; words which must at some time, in some prehistoric language, have had definite meanings entirely apart from those which they now convey to our minds. In savage languages it is sometimes possible to detect these meanings, and thus to obtain possession of the clue that leads to the development, in the barbarian’s rude mind, of a count scale—a number system. But in languages like those of modern Europe, the pedigree claimed by numerals is so long that, in the successive changes through which they have passed, all trace of their origin seems to have been lost.
The actual number of such words is, however, surprisingly small in any language. In English we count by simple words only to 10. From this point onward all our numerals except “hundred” and “thousand” are compounds and combinations of the names of smaller numbers. The words we employ to designate the higher orders of units, as million, billion, trillion, etc., are appropriated bodily from the Italian; and the native words pair, tale, brace, dozen, gross, and score, can hardly be classed as numerals in the strict sense of the word. German possesses exactly the same number of native words in its numeral scale as English; and the same may be said of the Teutonic languages generally, as well as of the Celtic, the Latin, the Slavonic, and the Basque. This is, in fact, the universal method observed in the formation of any numeral scale, though the actual number of simple words may vary. The Chiquito language has but one numeral of any kind whatever; English contains twelve simple terms; Sanskrit has twenty-seven, while Japanese possesses twenty-four, and the Chinese a number almost equally great. Very many languages, as might be expected, contain special numeral expressions, such as the German dutzend and the French dizaine; but these, like the English dozen and score, are not to be regarded as numerals proper.
The formation of numeral words shows at a glance the general method in which any number scale has been built up. The primitive savage counts on his fingers until he has reached the end of one, or more probably of both, hands. Then, if he wishes to proceed farther, some mark is made, a pebble is laid aside, a knot tied, or some similar device employed to signify that all the counters at his disposal have been used. Then the count begins anew, and to avoid multiplication of words, as well as to assist the memory, the terms already used are again resorted to; and the name by which the first halting-place was designated is repeated with each new numeral. Hence the thirteen, fourteen, fifteen, etc., which are contractions of the fuller expressions three-and-ten, four-and-ten, five-and-ten, etc. The specific method of combination may not always be the same, as witness the eighteen, or eight-ten, in English, and dix-huit, or ten-eight, in French; forty-five, or four-tens-five, in English, and _fuenf und vierzig_, or five and four tens in German. But the general method is the same the world over, presenting us with nothing but local variations, which are, relatively speaking, entirely unimportant. With this fact in mind, we can cease to wonder at the small number of simple numerals in any language. It might, indeed, be queried, why do any languages, English and German, for example, have unusual compounds for 11 and 12? It would seem as though the regular method of compounding should begin with 10 and 1, instead of 10 and 3, in any language using a system with 10 as a base. An examination of several hundred numeral scales shows that the Teutonic languages are somewhat exceptional in this respect. The words eleven and twelve are undoubtedly combinations, but not in the same direct sense as thirteen, twenty-five, etc. The same may be said of the French onze, douze, treize, quatorze, quinze, and seize, which are obvious compounds, but not formed in the same manner as the numerals above that point. Almost all civilized languages, however, except the Teutonic, and practically all uncivilized languages, begin their direct numeral combinations as soon as they have passed their number base, whatever that may be. To give an illustration, selected quite at random from among the barbarous tribes of Africa, the Ki-Swahili numeral scale runs as follows:
1. moyyi,
2. mbiri,
3. tato,
4. ena,
5. tano,
6. seta,
7. saba,
8. nani,
9. kenda,
10. kumi,
11. kumi na moyyi,
12. kumi na mbiri,
13. kumi na tato,
etc.
The words for 11, 12, and 13, are seen at a glance to signify ten-and-one, ten-and-two, ten-and-three, and the count proceeds, as might be inferred, in a similar manner as far as the number system extends. Our English combinations are a little closer than these, and the combinations found in certain other languages are, in turn, closer than those of the English; as witness the once, 11, doce, 12, trece, 13, etc., of Spanish. But the process is essentially the same, and the law may be accepted as practically invariable, that all numerals greater than the base of a system are expressed by compound words, except such as are necessary to establish some new order of unit, as hundred or thousand.
In the scale just given, it will be noticed that the larger number precedes the smaller, giving 10 + 1, 10 + 2, etc., instead of 1 + 10, 2 + 10, etc. This seems entirely natural, and hardly calls for any comment whatever. But we have only to consider the formation of our English “teens” to see that our own method is, at its inception, just the reverse of this. Thirteen, 14, and the remaining numerals up to 19 are formed by prefixing the smaller number to the base; and it is only when we pass 20 that we return to the more direct and obvious method of giving precedence to the larger. In German and other Teutonic languages the inverse method is continued still further. Here 25 is fuenf und zwanzig, 5 and 20; 92 is zwei und neunzig, 2 and 90, and so on to 99. Above 100 the order is made direct, as in English. Of course, this mode of formation between 20 and 100 is permissible in English, where “five and twenty” is just as correct a form as twenty-five. But it is archaic, and would soon pass out of the language altogether, were it not for the influence of some of the older writings which have had a strong influence in preserving for us many of older and more essentially Saxon forms of expression.
Both the methods described above are found in all parts of the world, but what I have called the direct is far more common than the other. In general, where the smaller number precedes the larger it signifies multiplication instead of addition. Thus, when we say “thirty,” i.e. three-ten, we mean 3×10; just as “three hundred” means 3×100. When the larger precedes the smaller, we must usually understand addition. But to both these rules there are very many exceptions. Among higher numbers the inverse order is very rarely used; though even here an occasional exception is found. The Taensa Indians, for example, place the smaller numbers before the larger, no matter how far their scale may extend. To say 1881 they make a complete inversion of our own order, beginning with 1 and ending with 1000. Their full numeral for this is yeha av wabki mar-u-wab mar-u-haki, which means, literally, 1 + 80 + 100×8 + 100×10. Such exceptions are, however, quite rare.
One other method of combination, that of subtraction, remains to be considered. Every student of Latin will recall at once the duodeviginti, 2 from 20, and undeviginti, 1 from 20, which in that language are the regular forms of expression for 18 and 19. At first they seem decidedly odd; but familiarity soon accustoms one to them, and they cease entirely to attract any special attention. This principle of subtraction, which, in the formation of numeral words, is quite foreign to the genius of English, is still of such common occurrence in other languages that the Latin examples just given cease to be solitary instances.
The origin of numerals of this class is to be found in the idea of reference, not necessarily to the last, but to the nearest, halting-point in the scale. Many tribes seem to regard 9 as “almost 10,” and to give it a name which conveys this thought. In the Mississaga, one of the numerous Algonquin languages, we have, for example, the word cangaswi, “incomplete 10,” for 9. In the Kwakiutl of British Columbia, 8 as well as 9 is formed in this way; these two numbers being matlguanatl, 10 – 2, and nanema, 10 – 1, respectively. In many of the languages of British Columbia we find a similar formation for 8 and 9, or for 9 alone. The same formation occurs in Malay, resulting in the numerals delapan, 10 – 2, and sambilan 10 – 1. In Green Island, one of the New Ireland group, these become simply andra-lua, “less 2,” and andra-si, “less 1.” In the Admiralty Islands this formation is carried back one step further, and not only gives us shua-luea, “less 2,” and shu-ri, “less 1,” but also makes 7 appear as sua-tolu, “less 3.”[59] Surprising as this numeral is, it is more than matched by the Ainu scale, which carries subtraction back still another step, and calls 6, 10 – 4. The four numerals from 6 to 9 in this scale are respectively, iwa, 10 – 4, arawa, 10 – 3, tupe-san, 10 – 2, and sinepe-san, 10 – 1. Numerous examples of this kind of formation will be found in later chapters of this work; but they will usually be found to occur in one or both of the numerals, 8 and 9. Occasionally they appear among the higher numbers; as in the Maya languages, where, for example, 99 years is “one single year lacking from five score years,” and in the Arikara dialects, where 98 and 99 are “5 men minus” and “5 men 1 not.” The Welsh, Danish, and other languages less easily accessible than these to the general student, also furnish interesting examples of a similar character.
More rarely yet are instances met with of languages which make use of subtraction almost as freely as addition, in the composition of numerals. Within the past few years such an instance has been noticed in the case of the Bellacoola language of British Columbia. In their numeral scale 15, “one foot,” is followed by 16, “one man less 4”; 17, “one man less 3”; 18, “one man less 2”; 19, “one man less 1”; and 20, one man. Twenty-five is “one man and one hand”; 26, “one man and two hands less 4”; 36, “two men less 4”; and so on. This method of formation prevails throughout the entire numeral scale.
One of the best known and most interesting examples of subtraction as a well-defined principle of formation is found in the Maya scale. Up to 40 no special peculiarity appears; but as the count progresses beyond that point we find a succession of numerals which one is almost tempted to call 60 – 19, 60 – 18, 60 – 17, etc. Literally translated the meanings seem to be 1 to 60, 2 to 60, 3 to 60, etc. The point of reference is 60, and the thought underlying the words may probably be expressed by the paraphrases, “1 on the third score, 2 on the third score, 3 on the third score,” etc. Similarly, 61 is 1 on the fourth score, 81 is one on the fifth score, 381 is 1 on the nineteenth score, and so on to 400. At 441 the same formation reappears; and it continues to characterize the system in a regular and consistent manner, no matter how far it is extended.
The Yoruba language of Africa is another example of most lavish use of subtraction; but it here results in a system much less consistent and natural than that just considered. Here we find not only 5, 10, and 20 subtracted from the next higher unit, but also 40, and even 100. For example, 360 is 400 – 40; 460 is 500 – 40; 500 is 600 – 100; 1300 is 1400 – 100, etc. One of the Yoruba units is 200; and all the odd hundreds up to 2000, the next higher unit, are formed by subtracting 100 from the next higher multiple of 200. The system is quite complex, and very artificial; and seems to have been developed by intercourse with traders.
It has already been stated that the primitive meanings of our own simple numerals have been lost. This is also true of the languages of nearly all other civilized peoples, and of numerous savage races as well. We are at liberty to suppose, and we do suppose, that in very many cases these words once expressed meanings closely connected with the names of the fingers, or with the fingers themselves, or both. Now and then a case is met with in which the numeral word frankly avows its meaning—as in the Botocudo language, where 1 is expressed by podzik, finger, and 2 by kripo, double finger; and in the Eskimo dialect of Hudson’s Bay, where eerkitkoka means both 10 and little finger. Such cases are, however, somewhat exceptional.
In a few noteworthy instances, the words composing the numeral scale of a language have been carefully investigated and their original meanings accurately determined. The simple structure of many of the rude languages of the world should render this possible in a multitude of cases; but investigators are too often content with the mere numerals themselves, and make no inquiry respecting their meanings. But the following exposition of the Zuni scale, given by Lieutenant Gushing leaves nothing to be desired:
1. toepinte = taken to start with.
2. kwilli = put down together with.
3. ha’[=i] = the equally dividing finger.
4. awite = all the fingers all but done with.
5. oepte = the notched off.
This finishes the list of original simple numerals, the Zuni stopping, or “notching off,” when he finishes the fingers of one hand. Compounding now begins.
6. topalik’ya = another brought to add to the done with.
7. kwillilik’ya = two brought to and held up with the rest.
8. hailik’ye = three brought to and held up with the rest.
9. tenalik’ya = all but all are held up with the rest.
10. aestem’thila = all the fingers.
11. aestem’thla topayae’thl’tona = all the fingers and another over above held.
The process of formation indicated in 11 is used in the succeeding numerals up to 19.
20. kwillik’yenaestem’thlan = two times all the fingers.
100. aessiaestem’thlak’ya = the fingers all the fingers.
1000. aessiaestem’thlanak’yenaestem’thla = the fingers all the fingers times all the fingers.
The only numerals calling for any special note are those for 11 and 9. For 9 we should naturally expect a word corresponding in structure and meaning to the words for 7 and 8. But instead of the “four brought to and held up with the rest,” for which we naturally look, the Zuni, to show that he has used all of his fingers but one, says “all but all are held up with the rest.” To express 11 he cannot use a similar form of composition, since he has already used it in constructing his word for 6, so he says “all the fingers and another over above held.”
The one remarkable point to be noted about the Zuni scale is, after all, the formation of the words for 1 and 2. While the savage almost always counts on his fingers, it does not seem at all certain that these words would necessarily be of finger formation. The savage can always distinguish between one object and two objects, and it is hardly reasonable to believe that any external aid is needed to arrive at a distinct perception of this difference. The numerals for 1 and 2 would be the earliest to be formed in any language, and in most, if not all, cases they would be formed long before the need would be felt for terms to describe any higher number. If this theory be correct, we should expect to find finger names for numerals beginning not lower than 3, and oftener with 5 than with any other number. The highest authority has ventured the assertion that all numeral words have their origin in the names of the fingers; substantially the same conclusion was reached by Professor Pott, of Halle, whose work on numeral nomenclature led him deeply into the study of the origin of these words. But we have abundant evidence at hand to show that, universal as finger counting has been, finger origin for numeral words has by no means been universal. That it is more frequently met with than any other origin is unquestionably true; but in many instances, which will be more fully considered in the following chapter, we find strictly non-digital derivations, especially in the case of the lowest members of the scale. But in nearly all languages the origin of the words for 1, 2, 3, and 4 are so entirely unknown that speculation respecting them is almost useless.
An excellent illustration of the ordinary method of formation which obtains among number scales is furnished by the Eskimos of Point Barrow, who have pure numeral words up to 5, and then begin a systematic course of word formation from the names of their fingers. If the names of the first five numerals are of finger origin, they have so completely lost their original form, or else the names of the fingers themselves have so changed, that no resemblance is now to be detected between them. This scale is so interesting that it is given with considerable fulness, as follows:
1. atauzik.
2. madro.
3. pinasun.
4. sisaman.
5. tudlemut.
6. atautyimin akbinigin [tudlimu(t)] = 5 and 1 on the next.
7. madronin akbinigin = twice on the next.
8. pinasunin akbinigin = three times on the next.
9. kodlinotaila = that which has not its 10.
10. kodlin = the upper part—i.e. the fingers.
14. akimiaxotaityuna = I have not 15.
15. akimia. [This seems to be a real numeral word.]
20. inyuina = a man come to an end.
25. inyuina tudlimunin akbinidigin = a man come to an end and 5 on the next.
30. inyuina kodlinin akbinidigin = a man come to an end and 10 on the next.
35. inyuina akimiamin aipalin = a man come to an end accompanied by 1 fifteen times.
40. madro inyuina = 2 men come to an end.
In this scale we find the finger origin appearing so clearly and so repeatedly that one feels some degree of surprise at finding 5 expressed by a pure numeral instead of by some word meaning hand or _fingers of one hand_. In this respect the Eskimo dialects are somewhat exceptional among scales built up of digital words. The system of the Greenland Eskimos, though differing slightly from that of their Point Barrow cousins, shows the same peculiarity. The first ten numerals of this scale are:
1. atausek.
2. mardluk.
3. pingasut.
4. sisamat.
5. tatdlimat.
6. arfinek-atausek = to the other hand 1.
7. arfinek-mardluk = to the other hand 2.
8. arfinek-pingasut = to the other hand 3.
9. arfinek-sisamat = to the other hand 4.
10. kulit.
还没有评论,快来发表第一个评论!